Chemistry 101 is a 5 unit course in general college chemistry. The course combines about 3 hours of lecture with two 2 hour laboratory sessions and 2 hours of conference per week. Students should have knowledge of college algebra with a minimum grade of "C". Chemistry 101 is a college level course in general inorganic chemistry. The course is designed primarily for students who have had previous chemistry training either in high school or an elementary course at a community college. A minimum grade of "C" in this course is necessary in order to enroll in Chemistry 102.

Required Texts: CHEMISTRY, by TRO (latest edition in the bookstore)
Required Materials: General Chemistry Lab Manual (online)
OFFICE HOURS: TBA
CONTACT: boanta@lacitycollege.edu or webpage: http://faculty.lacitycollege.edu/boanta

Attendance:
Attendance will be taken during each class period. Regular attendance is absolutely mandatory in order to pass this course. Drop Date Information: The deadline to drop without a "W" is the last day of Week 2 (of the semester), which is (http://www.lacitycollege.edu/services/admissions/dates.html#spring). If you must drop a course, drop before the specified deadline for dropping a class without a grade of "W." Dropping after Week 2 will result in a "W" on your transcript. Effective since July 1, 2012 students now have just 3 attempts to pass a class. If a student gets a "W" or grade of "D", "F", "I", or "NP" in a class, that will count as an attempt. A student's past record of course attempts district wide will also be considered. Therefore, before the end of Week 2 you should carefully consider if you can reasonably manage this course with the other factors in your life (e.g. work, family, course load). If you think you will not be able to complete this course with a C or better, drop by (http://www.lacitycollege.edu/services/admissions/dates.html#spring). If you have any questions, please don't hesitate to talk to me. You may also see a counselor in the Counseling Center in AD 108.

Course Work and Grading Policy:
One grade will be assigned for Chem. 101. The grade will include both lecture work and laboratory work. Grades will be assigned on the basis of overall percentage of total points earned in both the lecture and the laboratory. If you fail either the lecture or lab portion of the course, the highest grade you may earn is a "D". The lecture percentage is factored to be 65% of the total grade and the lab is 35%.

HOMEWORK: Homework is online. Maximum of 15% of grade, points scaled down to 155.
CHAPTER TESTS: a number of chapter tests/quizzes will be given. Other quizzes are also possible and may not be pre-announced. No test or quiz can be taken at any other time. There will be no make-up tests or quizzes. The tests are composed of short essay, multiple choice and word problems based on lecture notes and homework problems.
MIDTERM EXAM: There will be a MIDTERM exam given during the semester (150 pts). There will be no make-up exams. If you miss an exam, make it up with extra credit. The exam is composed of short essay, multiple choice and word problems based on lecture notes and homework problems. You must also bring your own charged calculator with you for each quiz and exam, no borrowing or sharing is allowed.
FINAL EXAM: (200 pts), check the website for dates. The final will cover the information and skills necessary to begin Chem. 102 & Lab experiments (chapter 5 through 12).
(http://www.lacitycollege.edu/services/admissions/dates.html#spring).

The approximate point break down in the lecture:

QUIZZES	145 pts
HOMEWORK	155 pts
MIDTERM	150 pts
FINAL	200 pts
LECTURE TOTAL	**650 pts**
Formal Report (E6)	30 pts
Lab Practical (E18)	30 pts
Lab Reports	290 pts
LABORATORY TOTAL	**350 pts**
TOTAL	**1000 pts**

A letter grade will be assigned based on the total percentage as follows:

- **A** - 88% and above
- **B** - 76 to 87%
- **C** - 60 to 75%
- **D** - 50 to 59%
- **F** - below 50%

If you are interested in your class standing, add your scores up, divide by total possible points, then use the above scale.
LABORATORY SECTION

Safety is of the utmost importance, you must always comply with the safety rules found in the SAFETY RULES AND REGULATIONS section of your lab manual. Failure to obey these rules will result in your dismissal from this class. Safety goggles are REQUIRED at all times in the lab unless otherwise stated by the instructor. If you have not acquired safety goggles by the second week of class then you will not be allowed in the lab until you have them. Attendance is also mandatory for the lab. Laboratory experience can only be attained by actually being present in the lab and actually performing the experiment. If you miss more than 4 labs (12 hours) you may be dropped from the course. Make sure you have put away all equipment and locked your drawer before leaving!!!

WORKSHOPS: There are required workshops. Workshops are due as noted in the syllabus and late workshops are subjected to very heavy late penalties and may not be returned.

LAB REPORTS: Lab reports are due the next lab period after the completion date of the experiment. Late reports will be subjected to very heavy late penalties and may not be returned. You are responsible for downloading experiments in advance of doing the experiments; no hardcopies will be distributed.

LAB NOTEBOOK: The lab notebook is used for your raw data and any information that you feel is important. Anyone who does not have the appropriate notebook by the sixth day of class will be excused from the laboratory. All notes must be taken down in the notebook. Pre-labs will be checked at the beginning of each lab. A copy of the lab notes must be handed in at the end of each lab period.

FORMAL REPORT: A formal lab report (on one of the experiments, instructor's choice) will be due at the discretion of the instructor.

****A video will be shown and a test will be given on the first day covering safety issues. Although most of the information is common sense, it is imperative that everyone understands and complies with safety regulations.

Lab Course Requirements in detail:

Before Lab begins

1) Record Name/Title/Purpose/procedure in notebook (checked at the beginning of lab, 5 pts, & the carbon copy turned in with the lab report)

During Lab

2) Collect and record all primary data directly in notebook, you must have the lab notebook signed at the end of each lab day.

After all primary data is collected

3) Calculations (neatly written in you lab notebook, the carbon copy turned in)
4) Discussion/Conclusion (neatly written in you lab notebook, the carbon copy turned in)
5) Post-Lab Questions: (neatly written on the sheet)

To do before the lab begins: (you will not be allowed to start the lab if all are not complete)

1. Record the following in your lab notebook:

The second part of the pre-lab consists of filling out the Name/Title/Purpose/procedure in notebook prior to class time. A brief (2 or 3 sentence max) introduction to the experiment that includes the goal of the experiment and the method(s) used must be written neatly in the lab notebook. Do not copy the purpose straight from the lab book!

Example: Purpose: To determine the percent water in an unknown hydrate salt by repeated heating and weighting a sample.

Procedure: A step-by-step version written in your own words. This should be detailed enough that someone else could use it to replicate the experiment. Complete sentences are not necessary and diagrams can and should be used where appropriate. Tables are often useful for procedural descriptions and can dramatically reduce the length of the procedure section. In this section, you should only mention any changes in the procedure that I told you to make or that were necessary to make due to difficulties

Example: Procedure: Clean crucible

dry to const wt. w/heating
add about 5g unknown
heat gently 1st, then strongly for 10-15 min
cool-weigh-reheat-cool-weigh-repeat to const wt.

During Lab

2) Collect and record all primary data directly in notebook.

Before you leave lab, all relevant measurements and observations must be recorded directly in your laboratory notebook. Include anything noteworthy that you observe such as color and temperature changes, formation of a precipitate, etc. Large collections of data should be organized into tables for clarity. All numerical entries must have appropriate units. Since data sheets tend to be “works in progress” and to be information recorded as necessary and diagrams can and should be used where appropriate. Tables are often useful for procedural descriptions and can dramatically reduce the length of the procedure section. In this section, you should only mention any changes in the procedure that I told you to make or that were necessary to make due to difficulties

Example: Procedure: Clean crucible

dry to const wt. w/heating
add about 5g unknown
heat gently 1st, then strongly for 10-15 min
cool-weigh-reheat-cool-weigh-repeat to const wt.

During Lab

3) Sample Calculations

For any and all calculations involved in the experiment, a sample calculation must be shown. The sample calculations should clearly show the formula used (if any), the numeric values that were plugged into the formula including units, and the final answer obtained including units. The use of tables for data and calculations is always recommended. This provides a quick and easy way for the grader to find the appropriate information.

4) Discussion/Conclusion

The conclusion should be a paragraph in which you describe the results of the experiment. You should also include any major errors that might have affected your results and any other problems that you encountered during the lab. Keep in mind that the errors you should identify should not only be any mistakes that you know you made (like I spilled the beaker) but also errors due to the limitations of the chemicals or equipment (such as certain solutions might decompose in sunlight).

Discuss what you have learned, and what trends the data may show. If there were no trends, but you still think that you have made some learnings, be sure to discuss them. Do not summarize your calculations. Discuss your data, not just the numbers. Discuss the large trends, and any parts of the experiment that were difficult to do.

Example-Discussion/Conclusion: The theory involves the neutralization of acids and bases where the moles of acidic hydrogens are equal to the moles of the base used to neutralize it at the equivalence point. Since phenolphthalein was used as an indicator, the end point and the equivalence point are fairly close to each other. All volumes were to measured .01 ml, and the standardized NaOH solution was .102 M leading to an accuracy for the concentration of acetic acid of .001 M. Our results were slightly higher than the class average, which stands to reason considering many of the end point of other students were flaming red making their results too low. We are therefore confident that our results are accurate since all end points were the slightest pink perceivable.
5) **Post-Lab Questions**: Frequently, additional questions will be assigned. Answer these on the sheet provided in your lab packet and turn in with your lab report. The answers to post lab questions should be in complete sentences.

Late labs will be accepted for two weeks after the due date with a late penalty of 1-point per day it is late. After two weeks, the lab report will no longer be accepted.

NOTE: **ANYONE FOUND CHEATING WILL RECEIVE AN "F" GRADE FOR THE QUIZ/EXAM AND WILL BE RECOMMENDED TO THE DEAN OF STUDENTS FOR EXPULSION FROM THE COLLEGE.**

STUDENTS WITH DISABILITIES: Students with a verified disability who may need authorized accommodation(s) for this class are encouraged to notify the instructor and the Office of Special Services (DSPS) (SSV 100, 323-953-4000, ext. 2270) as soon as possible, at least two weeks before any exam or quiz. All information will remain confidential.

Financial Aid Information: If you need help paying for books and other college expenses, call the Financial Aid Office at (323) 953-4000 extension 2010, or see them at Student Services Village room 117
http://www.lacitycollege.edu/stusvcs/finaid/

Student Learning Outcome Statement:

By the end of this course you will be able to solve a stoichiometry problem in which the limiting reactant is not identified in the problem. Given a stoichiometry problem in which the limiting reactant is not identified in the problem, the student will be able to correctly interpret the problem, develop a correct solution, and generate a correct answer to the correct number of significant figures.